import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义tensorflow结构 x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y_ = tf.placeholder(tf.float32, [None, 10]) """激励函数softmax和loss函数交叉熵""" y = tf.nn.softmax(tf.matmul(x, W) + b) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), axis=1)) """或者用tf内置的loss函数,注意tf.nn.softmax_cross_entropy_with_logits已内置softmax变换""" # y_l = tf.matmul(x,W) + b # cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_l)) """用梯度下降提升""" train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) """初始化全部变量""" init = tf.global_variables_initializer() # 训练 sess = tf.Session() sess.run(init) """进行600次更新,SGD每批次输入100个样本""" for i in range(600): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # 评估模型,每20步打印准确率 if i % 20 == 0: """tf.argmax返回最大值的index,tf.equal比较是否相等""" correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) """转换为数字并求平均,如[True,False,False,True]转化为[1,0,0,1],平均值为0.5""" accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) """用测试数据计算,并打印准确率""" print(i, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) sess.close()
你和我的博客好像啊,我们交换个链接吧?http://www.enpeizhao.com/😄
好啊😄